
JOURNAL OF COMPUTATIONAL PHYSICS 33, 359-368 (1979) 

Application of the Finite-Element Method to the Hydrogen Atom 
in a Box in an Electric Field 

M. FRIEDMAN 

Physics Dept., N.R.C.N., P.O. Box 9001, Beer Sheva, Israel 

A. RABINOVITCH 

Physics Dept., Ben Gurion University, Beer Sheva, Israel 

AND 

R. THIEBERGER 

Physics Dept., N.R.C.N., P.O. Box 9001, Beer Sheva, Israel 
and 

Physics Dept., Ben Gurion University, Beer Sheva, Israel 

Received September 27, 1978 

A better understanding of the problems of a pressurized atom and a crystal, both under 
the influence of a constant electric field, has heen achieved through the numerical solution 
of the two-dimensional Schroedinger equation. The procedure consists of an adaptation of 
a finite-element package and gives fast and accurate results. 

INTRODUCTION 

In a recent publication [l], it has been shown that the finite-element method could 
be applied for solving the two-dimensional Schroedinger equation. In the present 
work the method was used to treat the case of a hydrogen atom in a box in the 
presence of a constant external electric field. 

The solution to this problem can be applied to investigate the atomic Stark effect 
and Stark ionization as well as the case of a Bloch electron in an elctric field. Although 
the atomic Stark effect and ionization is quite an old problem [2, 31, it has been 
constantly under investigation [4]. Our aim was to examine this problem for a pres- 
surized system. To that end we used a simple model, namely, the finite box. The 
application of this model to the atomic problem has already been proposed by 
Michels et al. [5], and to the crystal problem-by Wigner and Huntington [6]. 
Recently, there has been a renewed interest in the box model [7-91. The case of a 
free electron in a box with an applied electric field was treated as an “empty crystal 
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problem” [lo] and also by the Green’s function method [I l] where the density of 
states for the high levels was obtained. 

The crystal and the atomic cases differ over boundary conditions imposed on the 
boxes’ faces. We used two types of boundary conditions: 

(a) The wavefunction vanishes (a Dirichlet problem)-this is an approximation 
for a pressurized atom. 

(b) The normal derivative of the wavefunction vanishes (a Neumann problem)- 
this provides an approximation for a crystal under pressure. 

We solved both cases for various spherical boxes. Using the finite-element technique 
[12]. Since an external electric field was present, we had to consider separately different 
magnetic quantum numbers. When the quantum number did not vanish, this technique 
had to be carefully used so that one could by-pass a nonconvergence phenomena. 
The procedure is given in detail in the next section, followed by the numerical results 
and discussion. 

THE NUMERICAL METHOD 

The stationary Schroedinger equation for a single particle of mass m, , moving in 
the potential field V(r), is 

(1) 

where r = (x, y, z), E is a possible energy level, and $ is the corresponding wave- 
function. 

Using the units of I for a hydrogen atom with no electric field one obtains the 
equation 

where y = r sin 0, x = r cos 8 and p2 = x2 + y2. The complete study of Eq. (2) 
was already given in I. 

In this work two more terms were added to Eq. (2), namely, -m”/y and ~xy, to 
form the more general equation: 

where m (= 0, 1, 2,...) is the magnetic quantum number and 7 represents the external 
electric field, which is in the x-direction. 77 has the form: 

7=2h4E. 
mo2e5 
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If the units of E are V/cm, then 7 = 1.869 x lO-sE. For 7 # 0 the potential is no 
longer spherically symmetric and the energy levels for different values of m are not 
the same. The domain of solution was 

D & {(x, y) / x2 + y2 < R2, y 3 0) (5) 

and the boundary conditions are 

d(x, Y) = 0, x2 + y2 = R2 (64 

for our Dirichlet problem, and 

g (x, y) = 0, x2 + y2 < R” 

for a Neumann problem. If m # 0, an additional boundary condition, namely, 

d(x, 0) = 0, 1x1 <R (7) 

is needed so that the term -m”/y in Eq. (3) would not lead to a singularity. When 
substituting y = 0 into Eq. (3) for the m = 0 case, one sees that a natural boundary 
condition exists, which is 

2 (x, 0) = 0, /xl <R (for m = 0). (8) 

Throughout the numerical work the term -m2/y was integrated over a tringular 
element such that one of its sides was with 

L A {(x, 0) / 0 < x < R} - (9) 

Evidently, the double integral JJ (m”/y) dx dy over such an element does not converge 
near y = 0. However, the eigenvalues of Eq. (3) should not be affected by this region 
T, since its contribution depends on the expression (e.g., perturbation theory) 
.fJ I + 12(m2/r3 d T and we know (by substitution) that 4/y is bounded when y + 0. 
In order to check whether our numerical device could handle these singularities we 
ran the following tests: (a) The eigenvalues for m # 0, q = 0 were compared with 
those for m = 0. [I]. The difference, as a rule, was on the order of 10-4. (b) The 
domain of integration was taken to be 

D* ii {(x, Y> I x2 + y2 d R2, Y 3 a> (10) 

and we let 8 approach zero. The eigenvalues hardly changed. 
Another approach avoiding the calculation of the singular integral is to define a 

new eigenfunction 16 by 

YWX9 Y> = 4(x, YX (11) 
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Substituting I,L in Eq. (3) one obtains 

y20+1v2* + (1 + 24 y2@ g + y2+-1 ( 012 - 1122 + y + 7)xy2 + ey”) 4 = 0 (12) 

with 
#(x, 0) = 0, m2 # a2, 

g (x, 0) = 0, m2 = a2 (13b) 

as necessary boundary conditions. 

TABLE I 

The energy levels c, calculated for m = 1, oi = 0, 4, R = 2. 

a=0 3.153 6.656 10.757 12.737 15.558 20.689 20.936 26.856 

Ci=Q 3.173 6.666 10.707 12.617 15.439 19.673 20.863 26.879 

TABLE II 

The energy levels E for R = 2, 0 < m < 3; a Dirichlet problem 

m=O 
I (Ref. 111) m=l m=2 m=3 

0 -0.250 

1 3.153 

2 6.656 

0 6.661 

3 10.761 

1 12.780 

4 15.562 

2 20.670 

0 20.759 

5 20.940 

6 26.848 

3 27.791 

1 32.289 

7 33.365 

4 35.285 

3.153 

6.656 

10.759 

12.776 

15.558 

20.689 

20.936 

26.856 

27.787 

32.285 

33.422 

35.288 

6.656 

10.756 10.755 

15.550 15.541 

20.688 

20.929 20.917 

26.837 26.819 

27.784 27.774 

33.345 33.310 

35.168 35.051 
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There is now no singularity as long as 01 > 0. Although the eigenvalues for a fixed 
value of m should be the same for all LY the numerical accuracy decreases for OL > 0 
(Table 1). This could be explained in the following manner: Eq. (3) is elliptic over D 
except for y = 0, where it becomes parabolic. Transformation (11) for 01 > 0 causes 
the coefficient of Vz# to be of a higher power of y (= J++‘). One should then expect 
greater trouble near y = 0 in solving Eq. (12) rather than Eq. (3), since the transition 
to parabolicity is more pronounced. 

Hence, this approach was not adopted and direct integration of Eq. (3) was used. 

THE ENERGY LEVELS 

We solved Eqs. (3), (6a) and Eqs. (3), (6b), for R = 0.5, 2, 5.02, 6; 0 < r) < 100 
and m = 0, 1, 2, 3. Table II shows the equivalence of the eigenvalues for different 
magnetic quantum numbers and 17 = 0. Figure 1 describes the potential in the presence 
of an electric field (7 # 0), as a function of x for y = 0. Except for the bound electrons 
whose wavefunctions are obviously prominent for region I, one gets energy levels for 
electrons which are predominently in region III, especially for high fields and large 
radii. These electrons are distinguished by their wavefunctions being concentrated 

-2 i 

FIG. 1. The potential V(x) seen by the electron along they = 0 plane (R = S). V(x) = 2/l x I + 
TX, where the first term describes the atomic influence, and the second is the potential of the constant 
electric field (applied along the x-axis). 

5W33/3-5 
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TABLE III 

Wavefunction concentration near Y = R, R = 5.02, 7 = 10, nl = 0, E, = -44. 

x 0 1.255 2.510 3.765 5.020 

4(x, 0) -0.005 0.02 -0.02 0.11 0.73 

near x = R. Table III shows an example of this phenomenon, consisting of the wave- 
function’s values along the x-axis for R = 5.02, 7 = 10, m = 0, and for the first 
energy level. 

Tables IV and V show the first energy levels for m = 0 and m = 1, respectively, 
for a Dirichlet problem, R = 2, and for various values of 7 within the range 0 <T< 
100. 

TABLE IV 

The energy levels c, R = 2, m = 0, 0 < 17 < 100; a Dirichlet problem 

q=o 0.1 0.3 1 2 3 4 5 10 loo 

-0.250 -0.250 -0.257 -0.335 -0.589 -1.005 -1.566 -2.253 -6.907 -138.046 

3.153 3.152 3.146 3.083 2.893 2.620 2.294 1.929 -0.563 - 114.500 

6.657 6.657 6.653 6.605 6.449 6.199 5.867 5.464 2.768 -89.196 

6.660 6.660 6.663 6.704 6.817 6.954 7.068 7.127 6.244 -88.207 

10.766 10.766 10.766 10.765 10.758 10.731 10.666 10.551 9.201 -62.401 

12.782 12.782 12.782 12.782 12.783 12.792 12.812 12.841 12.689 - 58.283 

15.561 15.561 15.561 15.560 15.554 15.547 15.537 15.525 15.335 -35.161 

20.488 20.488 20.485 20.459 20.372 20.233 20.050 19.831 18.449 -33.848 

TABLE V 

The energy levels E, R = 2, m = 1, 0 < q Q 100; a Dirichlet problem 

q=o 0.1 1 2 10 100 

3.153 3.152 3.073 2.840 -2.628 -125.311 

6.657 6.656 6.632 6.557 3.770 - 100.627 

10.762 10.762 10.757 10.738 8.993 -75.407 

12.771 12.771 12.754 12.704 11.094 -71.577 

15.558 15.558 15.555 15.547 14.953 -48.690 

20.490 20.489 20.464 20.388 18.726 -36.325 

20.950 20.950 20.949 20.948 20.900 -21.194 

26.955 26.955 26.957 26.963 26.744 -9.946 
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The Dirichlet and the Neumann problems differ in the rate of change of the eigen- 
values with 9. The influence of the external electric field is stronger for the Neumann 
case and for larger KS. This behavior is expected since the contribution of the field 
term to the eigenvalue is proportional to J x 1 4 I2 dx, which depends upon the charge 
distribution of the wavefunction. The latter is more concentrated at small x for the 
Dirichlet problem [lo] and causes the decreasing of the above integral. Table VI 
shows the differences in E between 7) = 0 and 7 = 10, namely, ~(7 = 10) - e(v = 0), 
for both Dirichlet and Neumann cases and for R = 0.5,2,5.02. The calculated values 
are denoted by de;‘(D) and d$(iV) respectively, and the first eight differences for 
each problem are considered. 

The behavior of the energy levels as R increases is shown in Table VII. The first 
five energy levels for a Neuuann problem are given for 0.5 < R < 6 and q = 0. 
These levels describe the bottom end of the energy bands obtained for the Wigner- 
Seitz crystal and are in agreement with previous results [13]. 

TABLE VI 

Changes in energy levels in the presence of an external electric field and m = 0 

R = 0.5 R=2 R = 5.02 
A%“(D) A4W Act A+‘(N) AC:‘(D) A#N) 

-1.260 -0.263 -6.657 - 12.661 -35.776 -42.991 

-0.183 0.091 -3.710 -7.607 -31.854 -39.470 

-0.032 0.033 -3.889 -4.583 -26.600 -35.255 

-0.207 -0.021 -0.416 -3.651 -25.223 -31.365 

0.020 0.019 -1.565 -1.144 -21,941 -26.835 

0.060 0.014 -0.093 -2.391 -20.031 -26.774 

-0.007 -0.004 0.226 1.614 - 17.065 -22.544 

0.013 0.011 -2.000 -1.607 -13.655 -22.108 

TABLE VII 

Energy levels for a Neumann problem; ‘1 = 0, 0.5 < R Q 6. 

0.5 -6.110 12.064 39.716 69.716 76.720 

1 -3.123 1.689 8.684 14.318 17.978 

2 -1.659 -0.250 1.546 2.029 3.892 

3 -1.218 -0.416 0.202 0.407 1.462 

4 -1.057 -0.410 -0.249 0.071 0.671 

5 -1.007 -0.378 -0.351 -0.057 0.332 

6 -0.990 -0.355 -0.346 -0.111 . 0.163 
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STARK EFFECT 

For small values of the electric field (i.e., for small q), the energy levels should behave 
according to the well-known theory [14] of the Stark effect. This effect is calculated 
by the perturbation method, and the boundary conditions of the present work evi- 
dently do not change the following qualitative conclusions (Table VIII): (a) For well- 
separated energy levels the effect is of second order, i.e., de a q2 for small 77 (induced 
dipole moment). (b) For degenerate levels, the effect is linear, i.e., AC a 7, for small 7 
(permanent dipole moment). This result is also obtained approximately for closely 
spaced levels. Table VIII demonstrates the Stark effect for the well-separated level 
cl and for the closely spaced levels e2 , c3 , for m = 0. Similar behavior occurs for 
Dirichlet problems, as well. 

TABLE VIII 

The Stark effect for a Neumann Probiem, R = 6, m = 0 

0 -0.99024 -0.35536 -0.34638 
0.01 -0.99037 -0.37668 -0.32753 
0.02 -0.99079 -0.40391 -0.30783 

Our model can be used to calculate the ionization probability for the low-lying 
hydrogenic excited levels. Ionization is viewed as a tunneling process by which a bound 
electron passes from region I to region III (Fig. 1). Evidently tunneling should be 
approached carefully since we have calculated steady-state solutions. Tunneling 
calculations are usually carried out for one-dimensional problems. The case of the 
infinite box (free-atom ionization) can be brought to a one-dimensional form by 
using parabolic coordinates [3, 41. In our case, however, the procedure is invalid 
because of the spherical boundary conditions. We use a one-dimensional method 
devised for treating multidimensional tunneling problems [15, 161. In this method a 
path minimizing the action integral is sought and the tunneling probability is calculated 
along this path. We calculated the ionization probability [14] for the m = 0 case and 
for Neumann boundary conditions. The extension of the method to other conditions is 
obvious. For m = 0 the least action path is along the x-axis (see Fig. 1). The expression 
for the ionization probability is 

.  
s = expt--2 St1 (1 -  2/p + 7x -  W dx} 

4 11(-2/p + r]x - ~)-l/~ dx ’ (14) 
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TABLE IX 

Ionization probability for Neumann problems, R = 5.02, m = 0 

? 4 In S 

0.0100 -0.389 -40.3 

0.0125 -0.394 -29.2 

0.0150 -0.399 -21.7 

0.0175 -0.404 -15.8 

0.0200 -0.409 -10.1 

where the normalization was carried out along region I (i.e., inside the atom). Values 
of In S are given in Table IX, for the first excited energy levels. 

All the computations were carried out on the CDC CYBER-73 computer of the 
Ben Gurion University. The average computing time needed for a complete solution 
(i.e., calculation of the energy levels for either a Dirichlet or a Neumann problem) 
was 2.5 min. 

CONCLUSIONS 

A finite element approach has been proposed for solving two-dimensional 
Schroedinger equations. Its efficiency, applicability, and accuracy were demonstrated 
with examples-a pressurized hydrogen atom and a crystal in the presence of a 
constant electric field. The same system in the presence of a magnetic field is now 
being studied. 
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